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QUENCHING OF ANTHRACENE FLUORESCENCE BY DIALKYLANILINES IN SATURATED HYDROCARBONS 

Nien-chu C. Yang* and Zhong-he Lu' 

Department of Chemistry, University of Chicago, Chicago, Illinois 60637 

Abstract: The bimolecular quenching constants of anthracene fluorescence by dialkyl- 
anilines in saturated hydrocarbons depend on the solvent viscosity and may exceed 
theoretical diffusion controlled limit in viscous hydrocarbons. 

Dialkylanilines interact with photoexcited anthracene in benzene at a rate slightly less 

than the diffusion controlled limit to form a luminescent exciplex. 
2-4 

At high aniline concen- 

trations, the exciplex formed may undergo further reactions with another molecule of dialkyl- 

aniline.3-5 In order to investigate the mechanism of this interaction between an exciplex and 

another donor molecule, we investigated the interaction of photoexcited anthracene with a bi- 

chromophoric dialkylaniline, 1,3-bis-(N-phenyl-N-methylamino)propane (DMA-AMD), in several satu- 

rated hydrocarbons and compared the results with those from dimethylaniline (DMA) and N-methyl- 

N-ethylaniline (MEA). The concentration range of anilines used varies from 0.00 to 0.03 M with- 

in which linear Stern-Volmer plots were obtained indicating that bimolecular processes involv- 

ing exciplexes were unimportant. The experimental methods used have been described previously.3 

The results on the stern-Volmer quenching constants in degassed solutions and various proper- 

ties of exciplexes formed are tabulated in the Table. 

Anthracene, An 

1,3-bis-(N-Phenyl-N-methyl- 
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rl, CP 

Tablea 

n-pentane 

0.22 

methylcyclo- n-hexa- 
hexane decane 

0.73 3.34 

E 1.84 2.02 2.06 

h *n*(O+O) 397*1 39821 400+-l 

TAn* (nsec) b 5.81 5.18 5.30 

Ksy(An*:DMA-AMD), M-l, (o-o.03M)c 140.5A1.5 66.5t1.5 32.8tO.B 

Ksy(An*:MEA), Pi-‘, (0-0.03M)C 77.5k1.5 49.3kO.7 30.3io.7 

K~~(A~*:DMA), M-~, (O-O.O3M)= 69.6tO.6 45.2t1.2 29.9t1.2 

k (lOgM-lsec-l) diff 30 9.0 2.0 

k diffTAn*' H-l 174 46.6 10.6 

x (An*:DMA-AMD) nmc 476+2 478*2 480?2 
max 

h max(An*:MEA), rmc 47522 477*2 478?2 

A max(An*:DMA), nrn’ 475?2 47622 477+2 

@f(An*:DMA-AMD) c,d 0.20 0.21 0.21 

$f(An*:MEA) c,d 0.43 0.39 0.37 

$f(An;k:DMA)C'd 0.45 0.41 0.37 

aValues in this Table are taken from reference 3 unless otherwise noted. 
b 
J. Rice, 

D. B. McDonald, L-K. Ng, and N. C. Yang, J. Chem. Phys., z, 4144 (1980). 'This work. 
dExperimental uncertainty, *lo%. 

We found that DMA-AMD is in general a more efficient quencher of anthracene fluorescence 

than the monochromophoric analogs and yields an exciplex which emits at the same wavelength as 

that of MBA but with a lower quantum yield. No new emission was detected. The results are 

consistent with a mechanistic Scheme that photoexcited anthracene forms an exciplex reversibly 

with a dialkylaniline, K = kl/k_l. In the absence of another quencher molecule, the exciplex 

formed undergoes a unimolecular decay with a rate of k2 (equation 3). The observed quenching 

rate will then be [kl][k2]/(k_l+k2) and the quantum yield of exciplex emission will be a 

function of this expression depending on the absolute rate of exciplex emission. 394 Since 

[An*:dialkylaniline] is known to react with a second molecule of dialkylaniline to undergo a 

bimolecular non-radiative process, 
3 

the second dialkylanilino group in DMA-AFD may undergo a 

similar intramolecular deactivation process (equation 5). The observed quenching rate of An* 

by DMA-AMD will then be [kl][k2+k3]/(k_l+k2+k3) and the quantum yield of exciplex emission will 



be a function of [kl][k2]/(k_l+k2+k3). Since the magnitudes of kl,k_l and k2 are expected to 

be similar for both MEA and DMA-AMD, and k3 is expected to be a finite number similar in magni- 

tude as (k_l+k2), 
3 

kq observed for DMA-AND is larger while $f is smaller than the monochrom- 

ophoric analogs. such an explanation would readily account for the experimental results obtain- 

ed for all three anilines in n-pentane. - 
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hv' and hv" denote anthracene fluorescence and exciplex emissions respectively. 

However, we also found that the Stern-Volmer constants (Ksv), going from n-pentane to n- - - 

hexadecane, decrease by a factor of less than five while the viscosity of the medium increases 

by a factor of 15. Since the lifetime of excited anthracene does not vary appreciably in these 

solvents, the quenching constants (kq) in n-hexadecane for all three anilines calculated from 

their K 
SV 

's exceed the theoretical rate of diffusion in that solvent by a factor of approxima- 

tely 3. 

It has been noted in the literature that a number of bimolecular processes involving excit- 

ed molecules, excluding energy transfer processes, may proceed with a rate exceeding the theore- 

tical diffusion controlled limit. 
6-10 

Several explanations had been suggested for these pheno- 

mena which include the variation of sliding coefficient between the solute and solvent mole- 

cules, 
6 

the difference in size between the quencher and the fluorescer, 
7 

the difference in size 

between the solvent and the solute molecules, 
6 

and a long range interaction between the fluo- 

rester and the electron donor. 
10 

However, none of these explanations seems to apply to our ex- 

perimental data. Hence the variation of the sliding coefficient may increase the diffusion 

rate by a factor of 1.5; 
6 

the size of the quencher molecule is not appreciably different from 



the fluorescer in our case; there is no appreciable effect on k 
4 

when the size of the quencher 

molecule is doubled (from DMA to DMA-AMD); and the non-polar nature of our media will prevent 

the electron transfer from the donor to the fluorescer to generate radical ions. A possible 

explanation which would fit all the experimental data is that excited anthracene will exert a 

reversible long range interaction on dialkylaniline (k >k 
1 diff 

) and the rate of dissociation of 

the exciplex (k_l) is a function of the solvent viscosity. The mechanism of this phenomenon 

is being investigated. 

The preliminary investigation in our laboratory on the quenching of pyrene fluorescence 

by these anilines in n-hexadecane indicated that k 's also exceed that of the theoretical diffu- - 
q 

sion controlled limit. 
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